For 20 years, advanced metering infrastructure (AMI) has been viewed primarily as a cost-efficient meter-reading resource — a key driver behind water utility ROI. More recently, however, utility operations increasingly rely upon AMI capabilities to cope with broader issues ranging from water scarcity to aging infrastructure. Here’s how an expanded view of AMI can benefit water utilities in both the short and long term.
While most water utilities with AMI infrastructure rely upon it to automate and refine the accuracy of their meter reading and billing functions, others are also using it to look deeper into their distribution networks, gain more insight into how it operates, and predict how to operate it more efficiently. To these thought leaders, the central value of AMI is no longer constrained to ‘metering’, but rather expanded over a broader scope of ‘management’ to future-proof their infrastructure.
With any given meter actively engaging the AMI network for only a fraction of a second each hour, it is easy to harness the remaining network availability to capture a wider variety of operational decision-making data and execute control signals to remotely actuated equipment. This can help progressive utilities improve overall efficiency in terms of deeper insight into energy use, better hardware utilization, better allocation of labor, and closer monitoring of water-quality issues. Smart infrastructure solutions also open greater opportunities for system automation to optimize system operating expenses (OPEX).
Unlike SCADA systems that work well within the confines of a water treatment plant but are expensive to extend over long distances, AMI infrastructure complemented by affordable endpoints as part of a smart infrastructure solution (also known as Industrial Internet of Things) can satisfy a wide range of distribution system applications cost efficiently. Here are just a few of the ways broader smart infrastructure solutions can be adopted through the use of affordable component investments to reduce OPEX and staffing requirements:
Smart infrastructure, smart networks, and communications technologies each carry different technical performance implications. AMI vendors that offer both RF and cellular network options can offer more appropriate choices for specific situations. While each technology implementation has its pluses and minuses, the issue of privately owned versus public AMI network infrastructure often comes down to a question of control.
With public cellular networks, much of the revenue and emphasis is typically focused on smartphone service. This means that restoration of AMI networks might be a lower priority for the cellular provider, which could cause delays in rebooting AMI networks after a major weather or seismic event severely damages cellular service. In any case, it will not give the water utility any opportunity to speed up the process. In the case of cellular communications networks shared among many competing resources, for example, similar questions about priorities can revolve around the bandwidth available on a shared network. Scalable AMI network infrastructure dedicated specifically to one utility’s or one city’s use and designed to be resilient in severe weather has proved to be a winning combination under stressful conditions.
Network upgrades raise another aspect of control. As public cellular providers discontinue 2G and 3G communications networks, individual AMI meters and other endpoints dedicated to that very specific technology will become obsolete. Private networks that can upgrade boards in just a few data collection units (DCUs), instead of tens of thousands of individual meter endpoints, will make it easier and less expensive to grow along with upgraded network technology and resist obsolescence.
For years, sharp water distribution operators running manually measured and controlled infrastructure have used system insight and experience to manage distribution infrastructure as a hands-on activity. Today, visionary water utilities are implementing AMI applications that reach beyond the ‘cash register’ mentality of meter reading/billing and enable them to exploit the two-way communication backbone of AMI networks. The scalability of AMI systems across millions of endpoints allows these operators to be more proactive and more efficient in tracking, analyzing, and executing their time-tested insights and strategies than they could be with piecemeal pressure, leak detection, or flow-control capabilities. In fact, expanded AMI applications are even paying dividends in terms of shared infrastructure for integrated utility applications.
This article first appeared on the Water Online website in May 2020